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A normal mode model of ultrasonic absorption in dilute polymer solutions is constructed by including 
internal viscosity and stiffness terms in the polymer equations of motion. The normal mode 
Smoluchowski equation is solved and the relaxing specific heat calculated by averaging over two 
different energy absorption terms: a bending force term of the type used by Harris and Hearst and an 
energy term resulting from a change in the end to end distance of the polymer. The results are then 
compared with some recent ultrasonic absorption measurements of Cochran, Dunbar, North and 
Pethrick on dilute polystyrene-toluene solutions. We find that both specific heat terms provide an 
explanation of the shape, position and molecular weight independence of the single relaxation for 
large molecular weights, but are unable to describe the molecular weight dependence observed by 
Cochran et aL when the molecular weight goes below 10 000. There is also some difficulty in ob- 
taining exact numerical agreement between the calculated and observed absorption amplitudes. 

INTRODUCTION 

Recent acoustic absorption experiments by Cochran, 
Dunbar, North and Pethrick I on dilute polystyrene- 
toluene solutions have shown the existence of  an almost 
ideal Debye-type relaxation in the low MHz range which 
is independent of the molecular weight of the polymer 
(at least for molecular weights above some critical value). 
Similar relaxations have also been observed in dielectric, 
nuclear magnetic, and resonance fluorescence experiments. 

Because of the molecular weight independence of this 
relaxation, the most popular explanation is in terms of a 
'local mode', i.e. a non-cooperative localized movement of  
some small segment of the backbone. The most likely 
mechanism for this local mode motion is generally con- 
sidered to be the crankshaft model of Shatzki 2, where four 
backbone carbon atoms rotate as a single unit and leave the 
remainder of the molecule completely undisturbed. The 
difficulties involved in such a crankshaft model have been 
discussed by Jones and Pugh 3. 

Recently however Pugh and Maclnnes 4 have shown that 
an explanation in terms of cooperative modes is still possible 
by including in the equation of motion an internal viscosity 
term similar to the one used by Peterlin s to obtain a finite 
value for the limiting high frequency intrinsic viscosity. The 
introduction of this term results in a modification of the 
relaxation spectrum so that it now contains both low fre- 
quency molecular weight dependent modes and also modes 
associated with a molecular weight independent peak in the 
relaxation time spectrum. The ability of these two contrast- 
ing theories to provide a qualitative description of the mole- 
cular weight independent high frequency relaxation has been 
discussed recently by Maclnnes and North 6. 

The significance of the peak in the relaxation time spec- 
trum will depend on the contribution made by each mode 
to the particular quantity being observed. In this paper we 
present a quantitative treatment of this problem for the 
ultrasonic absorption experiment. 
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Model 
Our starting point is the familiar Rouse-Zimm 7's bead 

and spring model of the polymer chain. We replace the mole- 
cule by a set of N-1  identical segments joiningN identical 
beads. Each segment contains sufficient monomer units so 
that the equilibrium separation of the ends of each segment 
is given by a Gaussian distribution. The segments then act as 
'entropy springs' and lead to a force on the/th bead of the 
form: 

Fentrow = - e l  ( - R  i_ 1 + 2 R / -  RI+ 1 ) (1) 

where el = 3kT/a 2 and a 2 is the mean square end to end 
distance of a Gaussian segment. 

In a real polymer the junctions between the segments are 
not perfectly free joints, the potential energy barriers for 
internal rotation about the carbon-carbon bonds require a 
finite time to surmount and this leads to an internal viscosity 
in the molecule, which we represent by a term proportional 
to the rate of change of curvature of the chain, i.e.: 

d 
FIV = -PIV-~ ( -R /_  1 + 2 R / -  R/+I) (2) 

where PlViS the internal viscosity coefficient. This differs 
slightly from the expression used by Peterlin s because of the 
absence of the term to account for the overall rotational 
motion of the polymer, but is similar to the expression used 
by Edwards and Freed 9, and Pugh and MacInnes 4. 

The cause of the relaxation in the acoustic absorption 
experiment is the inability of the energy absorption to re- 
main in phase with the perturbing sound wave. To provide 
a mechanism for this energy absorption we introduce two 
additional terms into the equations of motion. The first 
is a bending force term used by Harris and Hearst 10. This 
introduces a degree of stiffness into the polymer by requir- 
ing that the potential energy must be proportional to the 
square of the curvature of the chain. In a bead and spring 
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model this implies a force on the ]th bead of the form: 

FBF = -o(R/ '_ 2 - 4R]_ 1 + 611]_ 1 

4Rj +1 + Rj+2) (3) 

where a is the bending force constant. The term provides a 
very good explanation of the shape of the relaxation but is 
unable to provide quantitative agreement with experiment, 
and so we also include another term in the equation 

FES = e2( -Rj_  1 + 211/- Rj+I)  (4) 

where e 2 is a constant which is independent of temperature. 
This produces an energy contribution when the end to end 
distance of the chain is changed. 

The Langevin equation for the ]th bead has the form: 

d ° 

m dtt R/. = - ~ [ ! ]  + F +~( t )  (5) 

where m is the mass of a bead, ~ the friction coefficient, 
~(t) the fluctuating force and F is the intramolecular force 
on the bead, which is just the sum of the forces previously 
mentioned: 

where W n = Wn(Kn,t) and the divergence and gradient are 
taken with respect to the coordinates of  K n. We note that 
~' is also temperature dependent but since it multiplies every 
term on the right hand side its variation will not produce a 
first order contribution. The distribution function for the 
polymer will then be given by: 

W(K 1, K2 . . . . . . .  Kn,t) =- [In Wn(Kn,t) • (10) 

The adiabatic passage of the sound wave will cause a small 
sinusoidal variation in the temperature and hence a perturba- 
tion to equation (9). To include this temperature effect we 
write: 

T = T1 + A Texp(iwt) (11) 

where co is the angular frequency of the sound wave. 
If the Cartesian coordinates of Kn are p, q and u and we 

define dimensionless coordinates r, s and v by: 

r = (b3/bl)l/2p; s = (b3/bl)l/2q; v = (b3/bl)l/2u 

where 

b 1: kT/~' and 

F = Fentropy + FIV + FBF + FES 

In terms of the normal modes K n defined by: 

(6) 

N 1 
Kn (N)l/2 ~ Rjexp - - n j  (7) 

1'=1 

the equation is: 

d . 

rn--  Kn = -~ 'kn  + f(kn)K n + A n ( t )  (8) 
dt 

where 

27Tn 

N 
~' = ~ + 2PlV(1 - coskn); kn - 

with 

f (kn)  = 2e(cos kn -- 1) - 4o(coskn - 1)2 

b 3 - 
e(1 - coskn) + 2o(1 - coskn) 2 

and also a dimensionless time variable v = b3t, then substitu- 
tion of equation (11) into equation (9) gives: 

ATei~°° {V2Wn + 23LWn}(12 ) OWner =V2Wn + 2LW. + T1 

where 

raWn S ~ W n  v~W n 
LW n = 3W n + + + _ _  

ar as Ov 

2o(1 - -CO~n)--C2]  -1 
fl = I +  

el J 

and 

~0 
~ = _ _  

b3 

e = e I -- e 2 

and 

Calculation o f  specific heat 
To solve equation (12) we first define a new function 

P(r,s,v :o) as follows 

N 
1 

j=l 

From equation (8) we can now write a normal mode 
Smoluchowski equation of the form: 

W(r,s,v:o) = exp [ -½(r  2 + s 2 + v2)] P(r,s,v, :o) (13) 

This ensures that the unperturbed spatial operator in equa- 
tion (12) is now in self-adjoint form. We then assume that 
P can be written as the sum of the equilibrium distribution 
P0 and a correction term P1, linear in AT/T1 and having a 
time dependence exp(i~v), i.e. 

OWn at - v ' { k - ~  ' VWn - f(kn) KnWn} (9) 
AT 

P(r,s,v:v) = P0(r, s,v) + ~ exp(i~oo)Pl(r, s, v) 
Zl 

(14) 
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An expression for P1 is easily found by expanding in the 
eigenfunctions of the unperturbed operator; we Find: 

N 

CrWot (ES) = Z CES(n) - - - 7 ,  (22) 
1 + leO7" n 

n=l 

Pl(r, s, v) = Z al'm,n~l(r)¢m(S)(Jn(V) (15) where 

l,m,n =O 

where the Ss are Hermite functions and 

1 -  fl { ~l_ 2,0,O + 60,m_ 2,0 + 60,O,n_ 2 } al'm'n - i~o+ Xl,m,n 

(16) 

with 

3 
C e s ( n )  = - k e 2  

2 

[02 - 2o(1 - coskn) ] 

[el + 2o(1 - coskn) - 02] 2 

The corresponding specific heat for the bending force energy 
is: 

N 
Cr°gt(BF) = ~__~ CBF(n) 

1 + i~orh 
n = l  

(23) 

Xl, m,n = 2(1 + m + n) where 

To calculate the specific heat contribution from the rota- 
tional degrees of freedom we have to calculate the average 
energy stored in the chain. The energy contribution arising 
from a change in the end to end separation of the chain is 
just 

- ½ e 2 Z  [Rj+ l - R ]  12 
/" 

while the expression for the bending force energy is: 

(17) 

3 
c e(n) = - k 

2 

2o(1 - coskn)[2o(1 - coskn) - 02] 

[e I + 2o(I -- coskn) ] 2 

Before using these results to calculate the ultrasonic absorp- 
tion we have to evaluate the frequency dependence of the 
viscosity for this model. This is done in the next section. 

Calculation o f  viscosity 
We consider the polymer to be in a velocity field v0/ 

given by v0/= (gy], 0,0) where the velocity gradient g = 
go eiwt. According to Yamakawa u the expression for the 
intrinsic viscosity is then: 

½o Z I-R/-1 +2R/-R/+112 
/ 

In normal mode form these become: 

08) 

--02 Z (1 - coskn) (Kn'K*) (19) 
n 

and 

n 

(1 - coskn) 2 0Kn'K* n) (20) 

respectively. The average of IK n 12 is easily found from equa- 
tions (15) and (16) to be: 

3 bl 1 + - -  e i~°t . - -  (21) 
(Kn "Kn*) - 2 b3 T1 1 + iwr n' 

where r n = 1/4b 3. When this equation is used to calculate 
the average spring energy we find two contributions, the first 
is just the normal equilibrium quadratic potential energy 
term and reduces to the usual 3NkT/2 (provided 0 = el = 0). 
The second term represents the change in the stored energy 
caused by the temperature perturbation as the sound wave 
passes. If we divide this change in energy by the change in 
temperature, ATe it°t, then we define a 'rotational' specific 
heat C~o t: 

[,7]- NA (GjYP 
m~70g 

/ 

(24) 

where rl0 is the viscosity of the solvent and -F !  is the fric- 
tional force exerted on the ]th bead by the fluid, 

- F j  = - ~ ( v / ' -  v0/) (25) 

An alternate expression for this force is: 

- F j  = V/U + k T T / l n W  (26) 

where VjU represents the sum of the intramolecular forces 
and the second term represents the fluctuating Brownian 
force. This will integrate out of the final expression for the 
viscosity so we neglect it from here on. The intramolecular 
force is given by equation (6), and so the expression for the 
viscosity, in normal mode form, becomes: 

N 
- 2NA Z 

[~] M~og 
n = l  

(pnqn)(1 - coskn) [e - 2o(1 - coskn) 

- Plvf(kn)/~'] (27) 

where we have used the Langevin equation to eliminate a 
term in/b n . 

To calculate (Pnqn) we rewrite equation (9) in the form 
of a continuity equation: 
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a ~  
- Vn "Jn (28) 

Ot 

where Jn = [f(kn)KnWn - kTVn Wn]/~' (29) 

In the presence of a velocity field voj this expression 
needs to be modified by the addition of the term vojW , in 
normal mode space this is simply gqnWn i, and so the diffusion 
equation becomes 

coefficient. If we define a complex velocity U* this can be 
written: 

X = x0exp [ico(t - x/U*)] (34) 

where 

1 1 /h 

U* U w 
( 3 5 )  

aw. own f(k.) 
at gqn ap n ~, 

kT 
V°(KnWn) + T V2Wn (30) 

In the low frequency limit when no relaxation is present the 
velocity U 0 is given by: 

The equation is now identical to Yamakawa's n equation 
(33, 26) so we can use his result to fred: 

U ~ -  3' (36) 
pl3r 

k Z g  Ttl r 
(Pn qn) = (31 ) 

f(kn) 1 + icorA 

i . 
where the rnlS the same as defined in equation (21). The 
expression for the intrinsic viscosity now becomes: 

N 
RT ~ r n 

[r/l - (32) 
mrlo 1 + icor;~ 

n = l  

The result differs from the expressions given by Cerf t2 
and Peterlin s and from that of Maclnnes ~3. 

f 
The form of r n differs from the modified relaxation times 

of these authors because of the inclusion of the energy terms 
in the diffusion equation. If only the internal viscosity term 
is retained the r n become identical with those of  Maclnnes ~a. 

However, formula (32) has the unmodified rn as the 
multiplicative factor in the numerator whereas Maclnnes has 
r h. In ref 13 two derivations of the viscosity formula are 
given. The first employs Kirkwood's ~4 theory of the friction 
coefficient, but the integrals identified as internal friction 
constants are not, in fact, analogous to the type of expres- 
sion associated with friction constants by Kirkwood. 

The second derivation, from a correlation function, is 
equivalent to the treatment given here (based on that of 
Yamakawa n) but the internal viscosity force has implicitly 
been omitted in the expression equivalent to the right hand 
side of equation (26). 

The fundamental difference between the present treat- 
ment and the Cerf-Peterlin scheme is that we do not include 
a non-relaxing contribution associated with rigidity of the 
whole molecule. Since it is assumed to be non-relaxing its 
omission is not important in the study of high frequency 
relaxation phenomena. A rigorous treatment of such a term 
requires a much more explicit analysis of the effect of the 
intramolecular potentials. 

Ultrasonic absorption 
We begin by calculating the contribution to the absorp- 

tion from the rotational degrees of freedom. The displace- 
ment of the medium from its equilibrium position during 
the passage of the sound wave can be represented by an ex- 
pression of the form: 

X = x0exp [iw(t - x/U)] exp(-ex)  (33) 

where U is the velocity of the wave and a the absorption 

where p is the density, t3 T the isothermal compressibility and 
3' the ratio of specific heat at constant pressure to specific 
heat at constant volume. Combining (35) and (36) gives: 

(;0 
U* 7~ 

where %o is the effective heat capacity ratio for a sound wave 
of frequency co, i.e. 3'w = C~°/Cv ~. The specific heats will 
have contributions from both the solvent and the dissolved 
polymer, hence we write: 

Cp ~ = Cp L + C~ (poly) (38) 

where C L is the specific heat of the solvent, which we take 
to be independent of frequency, and Cp w (poly) is the speci- 
fic heat contribution from the polymer, which of course is 
strongly dependent on frequency. In fact: 

Ci(n) 
c ooly)-- + • , 

1 + Kor n 
n 

(39) 

where the second term represents the contribution from the 
rotational degrees of freedom and Ci (n) stands for either the 
bending force form of this specific heat given by equation 
(23) or the energy spring form of equation (22). Cp~ rep- 
resents the non-relaxing contribution form all the other de- 
grees of freedom. The corresponding expressions for Cv 
are obvious. If we define .4 and B by: 

N 
Ci(n) 

A = ~ 1 +cO2rn 2 
n=l 

B= ~ ,.,2~-' 2 
1+,,~ -n 

n=l 

(40) 

then 

3" _cp [C~ +Cw +a- iB  i 
( 4 1 )  

where Cp and Cv are the low frequency specific heats. 
The expression for a is found by equating the imaginary 
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parts of equations (41) and (37) and assuming that the sol- 
vent contribution to the specific heat is far larger than the 
polymer contribution. We also make the usual approxima- 
tion that the 'velocity dispersion is small (i.e. U ~ U0). 
This gives: 

N 

f'2 ro t -% ~ 1 + 6°2~'-~n2 
n=l 

where 

,y1. = CpL /CL and f= oJI2rr 

We now turn our attention to the classical viscous absorp- 
tion. For a fluid with shear viscosity r/s and bulk viscosity 77 v 
this is simply: 

 _2,2(4 ) 
f2 pU~ -3 ~s +~v (43) 

(For polymer solutions however see the recent paper by 
Metia and FreedlS.) 

The normal classical expression also includes a term resul- 
ting from the thermal conductivity of  the medium but this 
is negligible in our case. We consider the contributions from 
the toluene and polystyrene separately. 

Toluene. This contribution is non-relaxing. The ratio 
of bulk to volume viscosity is tabulated in Nozdrev t6. At 
30°C we have ~v/~s = 15.5; p, U 0 and r/s are given by 
Cochran etal. to be: p = 0.86 g/cmJ; UO = 1.3 x 103m/sec 
and r/s = 0.520 cp, which gives 

al l  2 = 91.5 x 10 -15 sec2/m (44) 

Polystyrene. There are no experimental figures for the 
ratio of  bulk to shear viscosity in polystyrene so we follow 
the example of Cochran et al. ~ and take ~v/~s = 5/3. Using 
the values for the constants given above we find: 

N 
a ~ rn 10 -15 sec2/m (45) [-2 = 31.3 nkT x 

1 + ~o2rh 2 
n=l 

Before we can use this expression we have to estimate the 
values of the parameters el ,  ~ and Plv. The ratio ~/el can 
be found by fitting to the zero frequency viscosity data. 
This gives: 

~/e I = 1.6 x 10 -9 sec 

which agrees well with rough estimates of ~ and el using the 
expressions: el = 3kT/a2; ~ = 6rrrlsa provided we take 'a' t o  
be approximately I0 A, which corresponds to 10 monomer 
units in the subchain. (We take the monomer length for 
polystyrene to be about 3 A.) To estimate PlV we look at 

? 

the expression for r n given by equation (21). This canbe 
written as the sum of two parts: 

rA = ~/[4e(1 - coskn) + 8o(1 - coskn) 2 ] 

+ #IV/[2e + 4o(1 - coskn) ] (46) 

The first is the normal Rouse mode expression for the re- 
laxation times, (modified by the bending force constant o) 

while the second corresponds to a molecular weight indepen- 
dent relaxation with relaxation time r, given by r = PlV/2e. 
(We ignore the dependence on molecular weight introduced 
by the bending force term in a first approximation). Taking 
this molecular weight independent relaxation to occur at 
20 MHz gives: 

PlV 
r = - -  = 8 . 0 x  10 -9sec 

2e 

We are now in a position to calculate the shape of the absorp- 
tion curve for the two different energy terms, and we discuss 
the results of  these calculations in the next section. 

RESULTS AND DISCUSSION 

The argument for the molecular weight independent relaxa- 
tion goes as follows: if there is a value of n, equal to no, for 
which 

=(7)]  47, 
then, for n greater than no, rn has a constant value given by; 

(7)1/ r ~  . 1 - - -  1-COS (48) 
2e e 

(Note that we are considering a ring polymer with cyclic 
boundary conditions, hence we must put N --- 2Z, where Z 
is now the number of beads in the polymer). The contribu- 
tion to the ultrasonic absorption from all the modes having 
n greater than no will then produce a single molecular weight 
independent Debye type relaxation, while the modes for 
which n is less than no will produce a molecular weight de- 
pendent Rouse-like contribution which will appear similar 
to the absorption due to the viscous relaxation. 

We can see this contrasting behaviour quite clearly in 
Figures 3 and 4 which show the calculated acoustic absorp- 
tion for a 100 000 molecular weight sample of  polystyrene 
in toluene. The concentration is 2.5% w/v and we are using 
the energy spring form of the specific heat given by equa- 
tion (22). Figure I showsf~ versus n. The Rouse spectrum 
fn, is shown for comparison. For small n values the spec- 
trum follows the Rouse curve, while above n = 30 the condi- 
tion of equation (47) is met and f~ is constant at 20 MHz. 
Figure 2 shows the contribution to (rv/f2)rot from the first 
30 modes. We see a broad relaxation starting at the first 
Rouse mode which looks very similar to the viscous contri- 
bution to the relaxation shown in Figure 3. The contribution 
from the remaining 70 modes is shown in Figure 4, and 
deafly fits a single Debye relaxation at 20 MHz. The total 
acoustic absorption is shown in Fgure 5. 

A similar set of results is obtained for the 20 000 MW 
sample. In this case f~ reaches a constant value at n = 6 
instead o fn  = 20. The rotational contribution from the first 
6 modes again displays a Rouse-like spectrum with an amplitude 
very much dependent on molecular weight while the con- 
tribution from modes 7 to 20 produces a single Debye-type 
relaxation which remains independent of the change in 
molecular weight, the relaxation again occurrin~ at  20 MHz 
with an amplitude of approximately 40 x 10 -15 sec2/m, as 
in Figure 4. The independence of this contribution to a 
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8 (  

Cr 

O~ 

3 

6-0 

A 

B 

' ' ' ' ' 6C) ' ' ' 20  4 0  8 0  

n (mode number) 

Figure 1 Relaxation frequencies f~ ahd fn versus mode number n 
for the 100000  molecular weight sample. A, fn; B, fn. Z = 100 

The magnitude of the total acoustic absorption leads to 
another problem. To obtain agreement with experiment 
for the Debye-type contribution to the absorption we have 
to take the ratio of e2 to el equal to 0.72. This leads to a 
low frequency rotational contribution from the first few 
modes of about 115 (Figure 2), and hence a total low fre- 
quency acoustic absorption of about 270 (Figure 5), which 
is much larger than the experimentally observed value. To 
produce better agreement with experiment we need a speci- 
fic heat term which reduces this contribution, and the one 
calculated from the Harris-Hearst bending force term does 
this. Equation (23) shows that CSF(n) is strongly mode de- 
pendent and tends to zero as n becomes small. This means 
that the contribution from the Rouse-like part of the spec- 
trum will be negligible and only the single relaxation will 
survive. The amplitude of the rotational contribution to 
the absorption will now be governed by the parameter o, and 
in fact we find that the amplitude has a maximum value 
when o = el. Using this value o f o  for the 100000MW 
sample results in an amplitude of 1.0 x 10 -15 sec2/m, which 
is now much too low (by a factor of 40). The only way we 
can increase the amplitude is to increase the number of de- 
grees of freedom, i.e.Z. But even if we take Z to the maxi- 

120 

IOO 

E 

BO 

_o 6 o  
x 

" ~ 4 0  

20 

3"LO 

~ A 

' 510 ' 7/0 1 
Log f (Hz) 

Figure 2 (~/f2)ro t versus frequency. The energy spring form of the 
specific heat has been used and only the first 30 modes are included 
in the summation. MW = 100000 .  A, 1st Rouse mode; B, acoustic 
mode 

change in molecular weight is the main prediction of the in- 
ternal viscosity - normal mode description. 

For molecular weights below 10 000 the results of 
Cochran et aL 1 indicate that the absorption starts to be- 
come molecular weight dependent, with the absorption fre- 
quency increasing and amplitude decreasing as the molecular 
weight is lowered. The model described here is unable to 
account for these results. From equation (46) we can see 
that, for very small Z, f~ will have a constant value of 
Plv/2e irrespective of the Value of n, so the relaxation will 
continue to occur at 20 MHz. There is a slight molecular 
weight effect below 10 000 but not in the right direction. 
For the 4000 MW sarnple the amplitude increases from 40 
x 10 -15 to 60 x 10-13sec2/m, in direct contrast to the ex- 
perimental results. 

4O 

~' 30  

% 
× 20 o l  

15  

IO 

Figure 3 
100000 

I A 

I 
I 

3.b 2o s.o 6.o 7-o B:o 
Log f (Hz) 

Classical viscous absorption versus frequency. MW = 

50  

I 
IA 

-~ 4 0  B 

m 
_o 3o 

2 o  

io  I 

I i I 

4 0  6 0  8 0  
Log f (Hz) 

Figure 4 (¢x/f2)rot versus frequency. The energy spring form of 
specific heat has been used and the summation taken over modes 31 
to 100. MW= 100000. A, 1st Rouse mode; B, acoustic mode 
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2 8 0  

"~ 240 
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0 
x 
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\ B  
12C 

I I I i I I I 
3.0 5 0 7.0 

Log f (Hz) 

Figure 5 Total calculated acoustic absorption versus frequency 
for the 100 000 M W  sample of Cochran et  al. A, 1st Rouse mode; 
B, acoustic mode 

able to explain the molecular weight dependence observed 
by Cochran et al. i as the molecular weight goes below 10 000. 
There is also a difficulty due to a loss in the number of deg- 
rees of freedom when the polymer chain is divided into 
Gaussian subunits. 

We therefore conclude that the modified Gaussian chain 
model cannot provide a really adequate treatment of the 
observed ultrasonic behaviour. Further progress towards the 
explanation of the phenomenon will probably involve models 
which take more explicit account of the intermolecular rota- 
tional potentials 17'1a. 
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tion time spectrum. This model provides a good explanation 
of the observed effects for large molecular weights but is un- 
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